Auf Blatt Erfurt nimmt der Thüringer Wald den zentralen Teil ein. Er wird im Nordosten vom Thüringer Becken und im Südosten vom Thüringisch-Fränkischen Schiefergebirge begrenzt. Die Horststruktur des Thüringer Waldes wurde ab dem Mesozoikum an der Fränkischen Linie herausgehoben. Das Grundgebirge ist großflächig vom Molassestockwerk (Rotliegendes) überdeckt. Nur lokal treten Gesteine des kristallinen Grundgebirges zu Tage. So stehen im Ruhlaer Kristallin Metamorphite des Kambroordoviziums (Quarzit, Amphibolit, Metapelit) und Präkambriums (Steinbacher Augengneis) sowie der postvariszisch intrudierte Ruhlaer Granit an. Durch markante Brüche wird der Thüringer Wald im Südosten vom Schwarzburger Antiklinorium des Thüringisch-Fränkischen Schiefergebirges begrenzt. Variszisch gefaltete Gesteinsfolgen (Schiefer, Quarzite, Grauwacken) bilden hier eine für Deutschland einmalige vollständige Serie vom Präkambrium bis Unterkarbon. Durch die variszische Faltung entstanden Südwest-Nordost-streichende Sattel- und Muldenstrukturen, wie hier im Blatt das Schwarzburger Antiklinorium bzw. das Ostthüringische Synklinorium. Die paläozoischen Sedimente wurden dabei gebietsweise schwach metamorph überprägt (Phyllitisierung) und geschiefert. In der Umrandung der Mittelgebirge lagern Zechstein-Sedimente (u. a. Kupferschiefer), wobei besonders große Vorkommen zwischen Lauchroden und Bad Liebenstein bzw. zwischen Königsee und Bad Blankenburg aufgeschlossen sind. Die Füllung des Thüringer Beckens im Nordost-Teil des Kartenblattes besteht aus mächtigen Sedimentfolgen der Trias. Die Muldenstruktur des Beckens bedingt den Ausbiss älterer Sedimente im Randbereich der Mulde und jüngeren im Zentrum, d. h. vom Buntsandstein über Muschelkalk zum Keuper. Sie sind z. T. von pleistozänem Löss, Fließerden oder fluviatilen Lockersedimenten überlagert. Im Südwest-Teil der Karte sind die mächtigen Sedimentschichten der Trias in Südthüringen erfasst. Die Gipfel der Rhön am Südwestrand des Blattausschnitts werden von miozänen Basalten gebildet. In den Tälern des jungen Vulkanitgebietes lagern verstärkt pleistozäner Hangschutt und Fließerden. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, stellt eine tektonische Übersichtskarte die geologischen Großeinheiten des Kartenblattes anschaulich dar. Zwei Profilschnitte gewähren zusätzliche Einblicke in den Aufbau des Untergrundes. Ein Nordwest-Südost-Schnitt quert den Thüringer Wald und das Thüringisch-Fränkische Schiefergebirge. Ein Südwest-Nordost-Profil schneidet die Trias- Sedimente Südthüringens, den Thüringer Wald und das Thüringer Becken.
Der Arktis-Viewer bietet die Möglichkeit, die von der BGR angebotenen Geodatendienste im Bereich der Arktis in stereographischer Projektion zu betrachten und untereinander zu kombinieren. Aktuell werden Webdienste aus den Fachthemen Geologie, Geochemie, Geophysik dargestellt.
Allgemeine Geschäftsbedingungen, siehe https://www.bgr.bund.de/AGB - General terms and conditions, see https://www.bgr.bund.de/AGB_en. Die bereitgestellten Informationen sind bei Weiterverwendung wie folgt zu zitieren: Datenquelle: Arktis-Viewer, (c) BGR, Hannover, 2021
In den Jahren 1977 - 1983 wurden durch die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) auf dem damaligen Staatsgebiet der Bundesrepublik Deutschland in mehreren Probenahmekampagnen ca. 80.000 Wasser- und 70.000 Sedimentproben aus Bächen und Flüssen entnommen und geochemisch untersucht. Ziel der Untersuchungen war neben der geochemischen Prospektion lagerstättenhöffiger Bereiche auch die Erfassung von Hinweisen auf anthropogene Umweltbelastungen. Die Ergebnisse dieser Untersuchungen wurden im Geochemischen Atlas Bundesrepublik Deutschland (Fauth et al., 1985) veröffentlicht. Bei den im Rahmen des Geochemischen Atlas Bundesrepublik Deutschland 1985 erhobenen Daten handelt es sich um eine in ihrer hohen Probenahmedichte einzigartige flächendeckende geochemische Aufnahme des damaligen Staatsgebietes der Bundesrepublik Deutschland. Alle späteren geochemischen Untersuchungen wurden mit einer ungleich geringeren Probenahmedichte durchgeführt. Diese wertvollen und unwiederbringlichen Daten werden nun über die Geoportale der BGR allgemein verfügbar gemacht. Ergänzend zur digitalen Bereitstellung des originalen Datenmaterials, der Texte aus Fauth et al. (1985) sowie nach dem 1985 verwendeten Verfahren hergestellten Verteilungskarten erfolgte eine Neubearbeitung der Daten mit modernen Verfahren. Der WMS zeigt die Verteilung der gemessenen Elementgehalte und Parameter in Bachsedimenten für jedes Element bzw. jeden Parameter in jeweils fünf verschiedenen farbigen Punkt- und Isoflächenkarten.
Allgemeine Geschäftsbedingungen, siehe https://www.bgr.bund.de/AGB - General terms and conditions, see https://www.bgr.bund.de/AGB_en. Die bereitgestellten Informationen sind bei Weiterverwendung wie folgt zu zitieren: Datenquelle: Geochemischer Atlas BRD (1985), (c) BGR Hannover, 2022
The “Geological Map of Germany 1:1,000,000 OneGeology-Europe (GK1000-1GE)” shows Germany’s surface geology: All geological units are described by their age (stratigraphy) and composition (lithology). The geological units and terms used in this map were semantically harmonized within the OneGeology-Europe project and have been - in a number of regions - geometrically and semantically made consistent with the neighbouring OneGeology-Europe participants.
General Terms and Conditions, s. https://www.bgr.bund.de/agb_en - Allgemeine Geschäftsbedingungen, s. https://www.bgr.bund.de/agb - In case of reuse the information provided should be cited as follows: "Data Source: OneGeology-Europe harmonized geology, (c) BGR Hanover, 2018"
Die BGR führte im Projekt „Deutschlandweite Aerogeophysik-Befliegung zur Kartierung des nahen Untergrundes und seiner Oberfläche“ (D-AERO) flächenhafte Befliegungen an der deutschen Nordseeküste durch. Das Messgebiet Langeoog (2008/09) enthält die Insel Langeoog, den westlichen Teil der Insel Spiekeroog, die Wattflächen südlich davon und einen Streifen auf dem Festland, der in etwa durch die Ortschaften Dornum im Westen und Werdum im Osten begrenzt wird. Die Gebietsgröße beträgt etwa 259 km² und 12 Messflüge mit einer Gesamtprofillänge von 1080 km (314.596 Messpunkte) wurden zur Abdeckung des gesamten Messgebiets benötigt. Der Sollabstand der 68 N-S-Messprofile beträgt 250 m, der Sollabstand der 7 W-O-Kontrollprofile beträgt 2000 m. Die Karte stellt die Anomalien des erdmagnetischen Feldes dar.
Allgemeine Geschäftsbedingungen, siehe https://www.bgr.bund.de/AGB - General terms and conditions, see https://www.bgr.bund.de/AGB_en. Die bereitgestellten Informationen sind bei Weiterverwendung wie folgt zu zitieren: Datenquelle: 128LangeoogHMG, (c) BGR, Hannover, 2016, doi:10.25928/bgr128hmg_mz8q-2733
Durch die LABO wurden 2017 für 16 Elemente neue, bundesweite Hintergrundwerte veröffentlicht. Sie beruhen auf Profilinformationen und Messdaten von Königswasserauszügen, die durch die BGR zusammengeführt und homogenisiert wurden. Daten mit hohen Bestimmungsgrenzen wurden nach bestimmten Kriterien von der weiteren Auswertung ausgeschlossen, damit die Bestimmungsgrenzen nicht die Hintergrundwerte beeinflussen. Um die Hintergrundwerte nicht durch Regionen mit hoher Stichprobendichte überproportional beeinflussen zu lassen, wurde in Teilen eine räumliche Ausdünnung durchgeführt. Die Werte mehrerer Horizonte eines Standortes wurden durch tiefengewichtete Mittelwerte zu einem Wert zusammengezogen. Zur Auswertung wurden die vorhandenen Messwerte verschiedenen Gruppen von Bodenausgangsgesteinen zugeordnet. Zudem wurde unterschieden, ob die Proben im Oberboden, im Unterboden oder im Untergrund genommen wurden. Bei den Oberböden wurde bei der Auswertung auch die unterschiedliche Nutzung (Acker, Grünland, Forst) berücksichtigt. Lockergesteine wurden aufgrund ihrer unterschiedlichen Zusammensetzung getrennt nach Nord- und Süddeutschland ausgewertet. Durch die Aufteilung der Daten in Teilkollektive wurden nicht in allen Fällen verlässliche Fallzahlen erreicht, sodass nur Hintergrundwerte mit Fallzahlen ?20 dargestellt werden. Das genaue Vorgehen bei der Ableitung ist dem Bericht der LABO-Bund/Länder-Arbeitsgemeinschaft Bodenschutz (2017): 'Hintergrundwerte für anorganische und organische Stoffe in Böden', 4. überarbeitete und ergänzte Auflage, zu entnehmen.
Allgemeine Geschäftsbedingungen, siehe https://www.bgr.bund.de/AGB - General terms and conditions, see https://www.bgr.bund.de/AGB_en. Die bereitgestellten Informationen sind bei Weiterverwendung wie folgt zu zitieren: Datenquelle: HGW1000_Cd V2.0, (c) BGR, Hannover, 2017
GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soil in Europe) ist ein Kooperationsprojekt zwischen der Expertengruppe „Geochemie“ der europäischen geologischen Dienste (EuroGeoSurveys) und Eurometeaux (Verbund der europäischen Metallindustrie). Insgesamt waren an der Durchführung des Projektes weltweit über 60 internationale Organisationen und Institutionen beteiligt. In den Jahren 2008 und 2009 wurden in 33 europäischen Ländern auf einer Fläche von 5 600 000 km² insgesamt 2219 Ackerproben (Ackerlandböden, 0 – 20 cm, Ap-Proben) und 2127 Grünlandproben (Weidelandböden, 0 – 10 cm, Gr-Proben) entnommen. Neben den chemischen Elementgehalten wurden in den Proben auch Bodeneigenschaften und -parameter wie der pH-Wert, die Korngrößenverteilung, die effektive Kationenaustauschkapazität (CEC), MIR-Spektren und die magnetische Suszeptibilität untersucht sowie einige Koeffizienten berechnet. Die Downloaddateien zeigen die flächenhafte Verteilung der für Molybdän (Mo) ermittelten RCR (risk characterisation ratio) in Form von farbigen Isoflächenkarten.
Auf Blatt Bielefeld wird das Norddeutsche Tiefland nach Süden von den mesozoischen Bergzügen des Wiehengebirges und des Teutoburger Waldes begrenzt. In der Südwest-Ecke des Kartenausschnitts ist zudem ein kleiner Teil des Münsterschen Kreidebeckens angeschnitten. Die Morphologie des Norddeutschen Tieflandes ist eiszeitlich geprägt. Die quartäre Deckschicht im Kartenausschnitt wird von Geschiebelehmen der saalekaltzeitlichen Grundmoräne dominiert. In den Flussniederungen und Senken sind zudem fluviatile Ablagerungen der Weichselkaltzeit weit verbreitet. Auch äolische Bildungen wie Löss- und Flugsande treten auf. Die Bergzüge am Südrand des Norddeutschen Tieflandes werden von mesozoischen Sedimentgesteinen gebildet. Vom Oberjura bis ins Tertiär unterlagen sie schubweise tektonischen Deformationen, bei denen sich zahlreiche Störungen und ein typischer Bruchschollenbau herausbildeten. Als Besonderheit sei die Ibbenbürener Scholle genannt, wo infolge bruchtektonischer Prozesse Schichten des Oberkarbons mit Einlagerungen von Steinkohle an der Oberfläche lagern. Als Folge der Schichtverstellungen treten in den Bergzügen unterschiedliche mesozoische Schichten zu Tage. Während im Wiehengebirge vorwiegend Sedimentgesteine des Mittleren und Oberen Juras anstehen, streichen im Teutoburger Wald neben Jura auch ältere Schichten der Trias aus. Kreidezeitliche Sedimente bilden den Kamm des Teutoburger Waldes und markieren den aufgebogenen Rand der Münsterschen Kreidesenke, die sich nach Südwesten anschließt und mit mächtigen Sedimentschichten der Oberkreide (Mergel- und Kalksteine bis 2000 m Tiefe) verfüllt ist. Zwischen Teutoburger Wald und Wiehengebirge erstreckt sich die Piesberg-Pyrmonter-Achse, eine strukturelle Aufwölbung, die in der Gegend um Osnabrück jungpaläozoische Sedimentgesteine (Oberkarbon und Zechstein) zu Tage treten lässt, z. B. Westfal-Ausbiss im Hüggel südöstlich von Hasbergen. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, gewährt ein geologisches Profil zusätzliche Einblicke in den Aufbau des Untergrundes. Der Südwest-Nordost-Schnitt kreuzt das Münstersche Kreidebecken, den Bruchschollenbau der mesozoischen Bergzüge und das Norddeutsche Tiefland.
Die Karte der Grundwasserbeeinflussung der Böden in Deutschland gibt einen Überblick über den Grad der Beeinflussung der Bodenentwicklung durch Grundwasser unterhalb der Geländeoberfläche. Böden, die durch Grundwasser beeinflusst sind, haben meist nur ein eingeschränktes Ertragspotential. Je höher der Grundwasserstand, desto größer ist der Einfluss auf das Pflanzenwachstum. Die Karte basiert auf der Auswertung der nutzungsdifferenzierten Bodenübersichtskarte 1:1.000.000 (BUEK1000N) und zeigt die klassifizierte Grundwasserstufe. Die Grundwasserstufe wird aus dem mittleren Grundwassertiefstand (MNGW) abgeleitet. Die Methode ist in der Bodenkundlichen Kartieranleitung (KA5) und in der Methodendokumentation Bodenkunde der Ad-hoc-AG Boden veröffentlicht. Für die nutzungsabhängige Differenzierung der Profildaten werden die Landnutzungsdaten aus CORINE Land Cover 2006 genutzt.
Allgemeine Geschäftsbedingungen, siehe https://www.bgr.bund.de/AGB - General terms and conditions, see https://www.bgr.bund.de/AGB_en. Die bereitgestellten Informationen sind bei Weiterverwendung wie folgt zu zitieren: Datenquelle: GWS1000_250 V1.0, (c) BGR, Hannover, 2015.
Der Online-Katalog umfasst den Bestand von Bibliothek und Archiv: geowissenschaftliche Monographien, Zeitschriften, Aufsätze, Karten sowie unveröffentlichte Archivberichte. Literatur aus der Zeit vor 1990 ist hier noch nicht vollständig nachgewiesen und auch dann nur mit formalen Kriterien (z.B. Titel, Autor, Jahr) suchbar.
Allgemeine Geschäftsbedingungen, siehe https://www.bgr.bund.de/AGB - General terms and conditions, see https://www.bgr.bund.de/AGB_en. Die bereitgestellten Informationen sind bei Weiterverwendung wie folgt zu zitieren: Datenquelle: Online-Katalog, (c) BGR, Hannover, 2021