GEMAS (Geochemical Mapping of Agricultural and Grazing Land Soil in Europe) ist ein Kooperationsprojekt zwischen der Expertengruppe „Geochemie“ der europäischen geologischen Dienste (EuroGeoSurveys) und Eurometeaux (Verbund der europäischen Metallindustrie). Insgesamt waren an der Durchführung des Projektes weltweit über 60 internationale Organisationen und Institutionen beteiligt. In den Jahren 2008 und 2009 wurden in 33 europäischen Ländern auf einer Fläche von 5 600 000 km² insgesamt 2219 Ackerproben (Ackerlandböden, 0 – 20 cm, Ap-Proben) und 2127 Grünlandproben (Weidelandböden, 0 – 10 cm, Gr-Proben) entnommen. In den Proben wurden 52 Elemente im Königswasseraufschluss, 41 Elemente als Gesamtgehalte sowie TC und TOC bestimmt. Ergänzend wurde in den Ap-Proben zusätzlich 57 Elemente in der mobilen Metallionenfraktion (MMI®) sowie die Bleiisotopenverhältnisse untersucht. Alle analytischen Untersuchungen unterlagen einer strengen externen Qualitätssicherung. Damit liegt erstmals ein qualitätsgesicherter und harmonisierter geochemischer Datensatz für die europäischen Landwirtschaftsböden mit einer Belegungsdichte von einer Probe pro 2 500 km² vor, der eine Darstellung der Elementgehalte und deren Bioverfügbarkeit im kontinentalen (europäischen) Maßstab ermöglicht. Die Downloaddateien zeigen die flächenhafte Verteilung der mit verschiedenen Analysenmetoden bestimmten Elementgehalte in Form von farbigen Isoflächenkarten mit jeweils 7 und 72 Klassen.
In den Jahren 1977 - 1983 wurden durch die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) auf dem damaligen Staatsgebiet der Bundesrepublik Deutschland in mehreren Probenahmekampagnen ca. 80.000 Wasser- und 70.000 Sedimentproben aus Bächen und Flüssen entnommen und geochemisch untersucht. Ziel der Untersuchungen war neben der geochemischen Prospektion lagerstättenhöffiger Bereiche auch die Erfassung von Hinweisen auf anthropogene Umweltbelastungen. Die Ergebnisse dieser Untersuchungen wurden im Geochemischen Atlas Bundesrepublik Deutschland (Fauth et al., 1985) veröffentlicht. Bei den im Rahmen des Geochemischen Atlas Bundesrepublik Deutschland 1985 erhobenen Daten handelt es sich um eine in ihrer hohen Probenahmedichte einzigartige flächendeckende geochemische Aufnahme des damaligen Staatsgebietes der Bundesrepublik Deutschland. Alle späteren geochemischen Untersuchungen wurden mit einer ungleich geringeren Probenahmedichte durchgeführt. Diese wertvollen und unwiederbringlichen Daten werden nun über die Geoportale der BGR allgemein verfügbar gemacht. Ergänzend zur digitalen Bereitstellung des originalen Datenmaterials, der Texte aus Fauth et al. (1985) sowie nach dem 1985 verwendeten Verfahren hergestellten Verteilungskarten erfolgte eine Neubearbeitung der Daten mit modernen Verfahren. Die Downloads zeigen die Verteilung der Bleigehalte in Bachwässern in fünf verschiedenen farbigen Punkt- und Isoflächenkarten. Ergänzend sind den Downloads die in Fauth et al. (1985) enthaltenen kurzen Erläuterungen zum Element Blei beigefügt.
Blatt Goslar zeigt einen sehr interessanten Ausschnitt der Geologie Deutschlands. Im zentralen Teil der Karte ist der Harz, im Norden das Harzvorland mit Subherzyner Senke und im Süden das Thüringer Becken erfasst. Der Harz zählt zu den Mittelgebirgen aus variszisch verfaltetem und verschiefertem Paläozoikum. Ein Großteil der geologischen Einheiten und Störungen streicht Südwest-Nordost. Die Platznahme der magmatischen Intrusivkomplexe (Brocken-, Ramberg- und Oker-Granit bzw. Bad Harzburger Gabbro) fand im Unterkarbon statt, während die Vulkanite bei Ilfeld ("Ilfelder Porphyrit" bzw. "Ilfelder Melaphyr") im Perm aufdrangen. Der Harz kann in drei Zonen gegliedert werden. Zum Oberharz zählen die Clausthaler Kulmfalten-Zone, der Oberharzer Devonsattel sowie die Acker-Bruchberg-Zone zwischen Osterode und Bad Harzburg. Der Mittelharz wird von der Blankenburger Faltenzone mit dem Elbingeröder Komplex, dem Tanner Grauwacken-Zug sowie der Sieber-Mulde gebildet. Zum Unterharz gehören die Harzgeröder Faltenzone (Olisthostrom-Rutschmassen) mit der Selke- und Südharz-Mulde (Gleitdecken) sowie das Epimetamorphikum der Zone von Wippra. Zurückhaltend wurde bei der Darstellung von Störungen verfahren, deren häufiges Auftreten zwar bekannt, deren Verlauf aber oft unsicher ist. Zechstein-Sedimente umranden den Harz, besonders in seiner südlichen bzw. südwestlichen Begrenzung. In der Subherzynen Senke sind kreidezeitliche Sedimente aufgeschlossen, die großflächig von quartärem Löss überlagert sind und von dünnen Ausbissen triassischer Sedimente umrandet werden. Westlich des Harzes zeigt sich der nördliche Leinetal-Graben mit mesozoischen Sedimenten (Keuper bis Malm) und der Erhebung des Rhüdener Sattels, auf dessen Buntsandstein-Formation die niedersächsische Neugliederung des Buntsandsteins beruht. Der Südteil des Blattes wird von der Trias des Eichsfeld-Thüringer Beckens (Keuper bis Buntsandstein) eingenommen, aus dem der Kreide-Ausbiss des Ohmgebirges und die jungpaläozoischen Sedimente des Kyffhäuser-Gebirges mit seinem präkambrischen Kristallinkomplex hervorragen. Auch hier kommt es zu Überlagerungen durch quartäre Lockersedimente, vorwiegend weichselkaltzeitlichem Löss. Neben der Legende, die über Alter, Genese und Petrographie der dargestellten Einheiten informiert, gewährt ein Profilschnitt Einblicke in den Aufbau des Untergrundes. Von Nord nach Süd kreuzt er das subherzyne Becken, die Harz-Nordrand-Aufschiebung, den Harz mit dem Eckergneis und Brockengranit, das Eichsfeld-Thüringer Becken mit dem Ohmgebirge und der Eichenberg-Gothaer Grabenzone.
The WMS GK2000 Geologie (INSPIRE) represents the surface geology of Germany and adjacent areas on a scale of 1:2,000,000. According to the Data Specification on Geology (D2.8.II.4_v3.0) the geological map provides INSPIRE-compliant data. The WMS GK2000 Geologie (INSPIRE) contains layers of the geologic units (GE.GeologicUnit), faults (GE.GeologicFault) and marginal position of the ice shield as well as the impact craters Nördlinger Ries and Steinheimer Becken (GE. GeomorphologicFeature) displayed correspondingly to the INSPIRE portrayal rules. The geologic units are represented graphically by stratigraphy (GE.GeologicUnit.AgeOfRocks) and lithology (GE.GeologicUnit.Lithology). For different geochronologic minimum and maximum ages, Upper Devonian - Permian, the portrayal is defined by the colour of the geochronologic minimum age (olderNamedAge). In case of the geologic units the user obtains detailed information via the getFeatureInfo request on the lithology, stratigraphy (age) and genesis (event environment and event process).
Terms of Use: General terms and conditions, see https://www.bgr.bund.de/AGB_en. For further use provided information has to be cited as follows: GK2000-Geologie-INSPIRE, (c) BGR Hannover, 2020
Die BGR führte eine flächenhafte Befliegung im Raum Schleiz-Greiz (Thüringen) im Rahmen des BMBF-Verbundprojektes DESMEX durch. Es handelt sich hierbei um eine Vorerkundung mit dem geophysikalischen Standardmesssystem der BGR. Das Messgebiet liegt zwischen Gera und Plauen am Rande des Thüringischen Schiefergebirges an der Grenze zu und teilweise in Sachsen. Die Gebietsgröße beträgt etwa 445 km². 10 Messflüge mit einer Gesamtprofillänge von 1591 km (374.072 Messpunkte) wurden zur Abdeckung des gesamten Messgebiets benötigt. Der Sollabstand der 124 NW-SO-Messprofile beträgt 300 m, der Sollabstand der 8 NO-SW-Kontrollprofile beträgt 2000 m. Die beiden ASCII-Datendateien beinhalten die Rohdaten sowie die prozessierten HEM-Daten zu jeweils sechs Messfrequenzen (0,4 - 130 kHz).
In the period from October 16, 1978 to December 9, 1978 geophysical investigations have been carried out on SONNE cruises SO-7A and SO-7B on the Lord Howe Rise off eastern Australia and in the northern Coral Sea by the Federal Institute for Geosciences and Natural Resources (Hannover) in co-operation with the Bureau of Mineral Resources, Geology & Geophysics (Canberra), Department of Scientific and Industrial Research (Wellington), Geological Survey of Papua New Guinea (Port Moresby). A total of 10,500 km of bathymetric, magnetic and gravity profiles, 7,000 km of digital seismic reflection profiles and 50 sonobuoy refraction profiles were recorded during this survey. Objective of cruise SO-7A was to determine the depth and nature of the basement of the Lord Howe Rise, the configuration of the early rift basin, and the thickness and internal structure of the enclosed sediments. A new sea-mount in the southern Norfolk Basin rising some 2200 m above sea floor characterized by a free air anomaly of about 80 mgal and by a magnetic anomaly of some 500 nT was found. A complex horst and graben zone often associated with volcanic intrusions underlies the western flank of the Lord Howe Rise. Within some grabens the "breakup"-unconformity seems to exist, supporting the model that the Lord Howe Rise and the Dampier Ridge were once part of the Australian continent. The thickness of pre-breakup sediments is normally small on the Lord Howe Rise. Only in some grabens the thickness of these sediments exceeds 1 second reflection time. The Oligocene/Eocene unconformity and a Miocene unconformity are clearly recognizable in all our seismic records. Best explanation of these unconformities seems to be relative falls in sea level due to swelling and subsidences of oceanic crust. Strong variations in the character of the acoustic basement have been observed. Besides blocks with flat-lying acoustic basement zones with hummocky and irregular basement surface exist which may relate to areas of stretched continental basement contaminated by basaltic intrusions. The eastern edge of the Lord Howe Rise is characterized by an edge anomaly rising to +1000 nT. The general magnetic and gravity features of the western flank of Lord Howe Rise and the Dampier Ridge are: A generally quiet magnetic field with isolated large anomalies, consistent with the faulted acoustic basement of low or moderate susceptibility, with low susceptibility, dense intrusives in places, and also high susceptibility intrusions or flows. Gravimetric/magnetic "edge anomalies" between the outer and western edge of the Lord Howe/Dampier Ridge and the Tasman Sea are apparently absent. The objective of cruise SO-7B was to search for marginal graben zones off the Queensland and Papuan Plateaus associated with the initial rifting of the Coral Sea Basin. In the seismic records at least two regional unconformities are recognizable which represent periods of erosion or non-deposition during Oligocene/Eocene respectively in Miocene time. Further an older unconformity exists in block-faulted regions of the Queensland and Papuan Plateaus. Beneath the present continental slopes the Miocene and Oligocene/Eocene unconformities lie close together and are sometimes coincident. The transition from oceanic crust of the Coral Sea Basin to continental crust of the Queensland and Papuan Plateaus occurs in the surveyed area over a narrow ( 50 km) zone and is associated with a sediment filled graben. The graben-zone observed beneath the present slope of the Queensland and Papuan Plateaus contains more than 2 sec (reflection time) thick sediments of pre-Oligocene/Eocene age. The oceanic crust, as it approaches the plateaus, either rapidly deepens or abruptly stops and/or changes its seismic character so as not to be recognizable. In the seismic records from the outer part and slope of the Queensland and Papuan Plateaus, 5 to 10 km wide, convex, reflectionless zones exist. These features are interpreted as drowned fossil reefs. All observed reefs lie beneath the Oligocene/Eocene unconformity indicating these present deep-water areas were at shallow depths in pre-Eocene time. In the surveyed area post-Oligocene fossil reefs do not exist suggesting these areas were already at upper bathyal depths in the Oligocene. Assuming a seismic velocity for reefal material of 4000 m/s, the reefs on the outer Papuan Plateau have an approximate thickness of 3000 meters. Assuming a reef-growth rate of 25 m/m.y. the growth of the reefs started in upper Jurassic time (120 m.y. + 29 m.y. (assumed age of the Oligocene/Eocene unconformity) yields to 149 m.y.). The basement of the Papuan and Queensland Plateaus is probably crystalline Paleozoic rocks. This is suggested for the Queensland Plateau in particular by their relatively shallow depth, refraction velocities of 6.0 - 6.3 km/s (Ewing et al.) and 5.0 (this survey) and high intensity magnetics. A complex system of horst and graben structures exist on the Queensland and Papuan Plateaus. A larger graben appears to trend in an East-West direction on the southern Papuan Plateau. This graben is about 1 second (reflection time) deep and varies in width from 5 to 20 km.
Allgemeine Geschäftsbedingungen, siehe http://www.bgr.bund.de/AGB - General terms and conditions, see http://www.bgr.bund.de/AGB_en. Die bereitgestellten Informationen sind bei Weiterverwendung wie folgt zu zitieren: Datenquelle: SO7 1978, (c) BGR, Hannover, 2019
Der Datensatz umfasst die Nachweisdaten der 2D-seismischen Surveys, die in den Anwendungsbereich des Geologiedatengesetzes fallen und von denen mindestens eine Profillinie in der Ausschließlichen Wirtschaftszone Deutschlands liegt oder deren Grenzverlauf kreuzt.
Dieser Datensatz kann gemäß der "Nutzungsbestimmungen für die Bereitstellung von Geodaten des Bundes" (https://sg.geodatenzentrum.de/web_public/gdz/lizenz/geonutzv.pdf) genutzt werden. - Datenbereitstellung gemäß Geologiedatengesetz vom 19. Juni 2020 (BGBl. I S. 1387). Die bereitgestellten Informationen sind bei Weiterverwendung wie folgt zu zitieren: Datenquelle: GeolDG-AWZ, (c) BGR Hannover, 2023
The major pre-alpine tectonic lineaments as the Glückstadt Graben and the Avalonia-Baltica suture zone run across the southern Baltic. The BalTec expedition aimed at the gapless imaging of these fault systems from the seafloor down to the Paleozoic basement. Scientifically the expedition was motivated by two hypotheses. We postulated that advances and retreats of icesheets during the glacials initiated and reactivated faulting of the Post-Permian succession, thereby generating several kilometers long near-vertical faults and anticlines. We further postulated that – in contrast to the generally accepted text book models – deformation of the initially up to 1800 m thick Zechstein salt started already during salt deposition as the consequence of salt load induced basin subsidence and resulting salt creep. The profile network was further designed to allow for linking the stratigraphy between previously generated local underground models in the frame of the TUNB project. Altogether we collected during cruise MSM52 onboard of R/V Maria S. Merian 62 reflection seismic profiles of an entire length of 3500 km. This data set contains all seismic lines located in the German EEZ (lines BGR16-212 to BGR16-264) as time-migrated version.
Allgemeine Geschäftsbedingungen, siehe http://www.bgr.bund.de/AGB - General terms and conditions, see http://www.bgr.bund.de/AGB_en. Die bereitgestellten Informationen sind bei Weiterverwendung wie folgt zu zitieren: Datenquelle: BGR16-2 2016, (c) BGR, Hannover, 2018
The GBL (INSPIRE) represents mechanically drilled boreholes approved by the State Geological Surveys of Germany (SGS). Most of the drilling data were not collected by the SGS, but were transmitted to SGS by third parties in accordance with legal requirements. Therefore, the SGS can accept no responsibility for the accuracy of the information. According to the Data Specification on Geology (D2.8.II.4_v3.0) the boreholes of each federal state are stored in one INSPIRE-compliant GML file. The GML file together with a Readme.txt file is provided in ZIP format (e.g. GBL-INSPIRE_Lower_Saxony.zip). The Readme.txt file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.
Mit den Energiedaten legt die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) Daten und Fakten zur weltweiten Verfügbarkeit, der Förderung sowie zum Import und Export von Energierohstoffen vor. Dies umfasst Daten zu fossilen Energierohstoffen und zu erneuerbaren Energieträgern. Die Datentabellen (Energiedaten) werden jährlich herausgegeben und hier wie gewohnt kostenfrei zum Download angeboten. Die veröffentlichten Datensätze zur Situation bei den erneuerbaren Energieträgern einschließlich Geothermie und Wasserstoff, sowie bei den Energierohstoffen Erdgas, Erdöl, Kernbrennstoffen und Kohle mit Stand Ende 2020 sind ein klassifiziertes und bewertetes Extrakt der Energierohstoff-Datenbank der BGR. Neben der Abschätzung des geologischen Inventars an Energierohstoffen mit belastbaren Aussagen zu Reserven und Ressourcen werden die Energiemärkte bezüglich der weltweiten Entwicklung von Produktion, Export, Import und Verbrauch betrachtet. Die Energiedaten dienen der rohstoffwirtschaftlichen Beratung des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK), der deutschen Wirtschaft und Wissenschaft sowie der Öffentlichkeit.